Count Your Faecal Parasite Worm Eggs Before They Hatch

Count Your Faecal Parasite Worm Eggs Before They Hatch

Counting parasite worm eggs in the faeces from your animals is easy and economical with Vetlab Bespoke FEC starter kits, that include flotation solutions, veterinary quality microscopes and everything you need to carry out Faecal Egg Counts.

Internal parasites of grazing animals spread from one animal to another by infective eggs shed with the faeces of an infected animal. Parasite eggs hatch into the grazing pasture where the active worms spread out and are eaten by grazing animals repeating the cycle of infection and increasing the ‘worm burden’ of all exposed animals.

Worm eggs, passed out in the faeces of infected animals, can lie dormant through the winter to reinfect grazing animals when they return to pasture in the spring. Heavy worm burdens reduce growth rate, cause a loss of weight, body condition and increase vulnerability to infection resulting in emaciation and even death.

What Is A Faecal Egg Count?

A faecal egg count or FEC is a measure of the number of parasite worm eggs in an animal’s faeces (droppings). Results, presented as the number of worm eggs per gram (epg) of faeces, gives an indication of the level of infection or ‘worm burden’ in an individual animal or for the entire herd.

The Faecal Egg Count is a useful, non-invasive method for estimating the individual worm burden of grazing animals including horses, cattle, donkeys, sheep, goats, llamas and alpacas. Owners of a small number of animals may be able to check every individual animal regularly, while larger herds or commercial farms may rely on representative sampling rather than each individual animal.

Why Are Regular Faecal Egg Counts Necessary?

Zero or medically insignificant Faecal Egg Counts will reassure keepers as to the internal health of their animals and to the hygiene and cleanliness of their pasture and stables. Confirming that no medical intervention is necessary will save on costs, and ensure that any veterinary treatment required is targeted where it will bring most benefit.

Medicating animals only when necessary prevents the overuse of drug treatments. In recent years, the ready availability of anti-worm medicines has led to a ‘treat first, test… maybe’ approach by some keepers. Overexposure to unnecessary medication has led to increasing drug resistance in parasitic worms and the growing risk of all available treatments becoming ineffective.

How Often Should An FEC Be Carried Out?

In the UK, Vettimes reports that FEC testing should be performed in all horses at 8-12 week intervals throughout the grazing period (spring to early autumn). Testing should also be carried out at the end of winter if horses have been grazed outdoors frequently or for longer periods.

Alpaca and llama specialists, The British Alpaca Society recommends advice from your veterinarian as permissible levels of FEC may depend on the age/condition of the animal and the type of worm. As a general rule, says BAS-UK, it is common to treat far lower egg counts in alpacas than might be considered in other animals.

For Sheep, the industry led Sustainable Control of Parasites in Sheep (SCOPS) recommends regular FEC testing on a 2 to 4 weekly cycle throughout the grazing season. SCOPS recognises that collecting faecal samples from every animal in a commercial flock isn’t practical!

This SCOPS link tells you how best to get a reliable overview of the parasite burden in a large flock. Collecting fresh droppings from a representative number of animals for professional laboratory or DIY testing is suggested as a testing strategy.

Can I Carry Out Faecal Egg Counts On My Own Animals?

Collecting fresh faecal samples from your horses, cattle, donkeys, sheep, goats, llamas and alpacas is the first step in reliable DIY faecal egg counting. SCOPS recommends wearing gloves to collect faeces less than 1 hour old and washing hands thoroughly afterwards. For large flocks, sampling 10% of the animals is advised.

Samples can be sent to commercial veterinary laboratories for testing but, with a little practice and some basic laboratory equipment, owners and keepers can carry out their own DIY in-house FEC testing to support their vet in deciding if any further treatment is necessary.

What Laboratory Equipment And Supplies Do I Need for FEC Testing?

How much DIY faecal worm egg counting you choose to do yourself depends only on your level of self confidence, readiness to gain experience and access to the appropriate and readily available laboratory equipment and consumables.

The FEC process divides readily into four stages: recovery of appropriate faecal samples, parasite egg recovery, egg counting, and interpretation of results. Depending on those results, a fifth stage might involve any appropriate veterinary treatment and any necessary changes to pasturing, stabling and hygiene practice.

How Can I Start DIY Animal Faeces Sampling?

SCOPS recommends collecting a representative number of fresh (warm to the touch) faecal samples from your animals. Disposable gloves and hand cleanser are also recommended as the minimum level of protective hygiene. Everything you need to carry out your own hygienic sampling can be found on the Vetlab Supplies Laboratory Consumables pages

What Do I Need To Separate Parasite Eggs from Faeces?

Parasite eggs are less dense than the faecal material that contains them. Left for long enough, a dispersion of faeces in water would allow the eggs to float free of the faecal material. However, this process is too slow to be practical, so gravity needs a little help to speed things along.

Mixing the faeces with a solution that encourages the eggs to float and the faecal matter to sink is made easy with Vetlab Supplies Ready-Made and Bespoke Floatation Solutions.

How Do I Count The Number Of Worm Eggs In A Faeces Sample?

Counting worm eggs sounds like a difficult task. But with a few pieces of the right kit, and a little practice, keepers can become proficient at estimating the worm burden of their animals. This count will equip keepers with sufficient information to approach their vet for advice on the appropriate anti-worm treatment.

Parasite egg counting requires one of the easy to use and economically available microscopes as recommended by Vetlab Supplies. The Vetlab helpline can guide you through the process of selecting and obtaining a microscope appropriate to your need.

Counting parasite eggs is made easy by the use of the tried and tested McMaster Worm Egg Counting Slide. The McMaster Slide holds a fixed volume of the liquid from the faeces sample. The number of worm eggs in this volume of sample can be counted by viewing the slide under the microscope.

All of the equipment required is available to purchase individually or as part of a complete bespoke kit.

How Do I Know If My Animals Need Veterinary Treatment?

A simple maths formula, calculated from how much of the faecal sample was tested, how much flotation solution was added, and how many eggs were counted on the McMaster slide gives you and your vet a measure of the worm burden for the animal tested.

With this FEC knowledge, you will be able to discuss with your vet the best course of any required treatment and helping prevent the emergence of multi-resistant worm infections in your animals.

To find out more about our range of Bespoke Parasitology Starter kits and the Vetlab McMaster Worm Egg Counting Method visit our website: www.vetlabsupplies.co.uk or call Tel: 01798 874567

Simple Equine Tapeworm Testing: Straight From The Horses Mouth

Simple Equine Tapeworm Testing: Straight From The Horses Mouth

Regular testing for equine tapeworm in horses and donkeys with the Equisal Saliva Test and Bespoke FEC Kits can increase the effectiveness of anthelmintic treatments, reduce the risk of parasite resistance and promote the long-term health of your horses and donkeys.

Overtreatment Increases Parasite Resistance

Treatment with equine de-worming medicines, known as anthelmintics (AH), effectively controls the vast majority of intestinal parasitic worms (helminths). However, the ready availability of these same medicines has lead to their overuse as a quick and easy substitute for veterinary testing and livery stable hygiene.

Tolerance to AH drug treatments in parasitic worm populations ranges from ‘highly susceptible’ to ‘highly resistant’. Overexposure to AH treatment might kill the vast majority of parasites, but the more resistant worms – though initially fewer in number – may still survive and multiply.

Without competition from the more susceptible worms, the fewer highly resistant survivors thrive, breed and pass on their drug-resistance to the next generation. The outcome is that overmedication reduces the effectiveness of each AH treatment until no useful treatment option remains.

Stronger and Stronger Doses Are Not The Answer

Increasing anthelmintic resistance (AHR) means that even stronger doses of AH medicines are needed next treatment. Continued over-treatment with the same AH medicine again and again only strengthens the resistance of the surviving tapeworms.

Eventually, the treatment becomes ineffective or, worse still, only effective in a dose so strong as to risk a dangerously adverse reaction from the horse itself. Changing the drug of choice may only begin a further round of acquired resistance ending in yet another ineffective treatment.

Strategies To Avoid Acquired Drug Resistance

Constantly changing the AH regime means that the few survivors of one treatment are less likely to survive a second, different, treatment before further resistance develops. With twice-yearly laboratory testing and good stable hygiene, unnecessary and ineffective treatment can be avoided.

With no new anthelmintic treatment on the horizon, the future relies on changes in the behaviour of owners and keepers. New strategies to counter increasing drug resistance in digestive tract parasites include regular monitoring and treating medically only when necessary.

Testing before treating not only helps prevent the development of drug-resistant tapeworms, it reduces the cost of wasteful over-treatment. The British Horse Society recommends a planned timetable of spring and autumn testing with medication, only when justified by the test results.

Good Hygiene Is Key to Equine Health

The need to resort to new treatment strategies is, perhaps, an indication that previous parasite reduction regimes have not been effectively applied. A report by UK-VET EQUINE (2009), circulated by The Horse Trust identifies the key risk factors in the spread of AHR, including:

– Poor manure collection and cleaning regimes.
– Poor pasture and paddock management.
– Frequently changing and high density horse populations.
– Grazing of younger, more vulnerable horses with older animals.
– Lack of effective quarantine measures.

UK-VET EQUINE recommended a range of effective strategies to reduce these risk factors:

– Collection of faecal material at least twice weekly.
– Rest and rotation of pasture – especially on stud farms.
– An awareness that parasites can overwinter on pasture.
– An awareness that worm larvae can migrate into pasture from contaminated field edges.

Types of Equine Intestinal Worm Infections

Horses and donkeys are at risk of infection and reinfection from a range of intestinal parasitic worms collectively known as Helminths. These worms fall broadly into three groups classified by veterinary laboratories as flukes (trematodes), tapeworms (cestodes) and roundworms (nematodes).

Animal charity Blue Cross warns that animals kept in poor, overstocked or unhygienic conditions are vulnerable to serious illness caused by five subtypes of intestinal parasitic worm:

Large Redworms (strongyles). Living in the horse’s intestine, they cause a swollen abdomen, internal bleeding, colic, weight loss and diarrhoea.

Small Redworms (cyathostomins). Feed on the intestinal tissue, these worms burrow into the gut wall to lie dormant through winter months emerging in early spring to cause weight loss, loss of condition, distended abdomen, colic and diarrhoea.

Roundworms (ascarids). Growing up to 40cm long, roundworms exploit the immature immune systems of foals under four years to cause inflammation and obstruction resulting in poor growth, lethargy, coughing, weight loss, loss of condition, distension and colic.

Tapeworms (anoplocephela). Tapeworms attach to the gut wall at the junction of the small intestine and large intestine causing impaction, colic, weight loss and even physical damage.
Tapeworm infestation is a particular problem for horse and donkey keepers because tapeworm eggs are too small for detection by routine centrifugation and McMaster slide FEC methodology.

Assessing The Worm Burden: Faecal Egg Counting

Equipped with a veterinary microscope, flotation solutions and a McMaster counting slide , the tell-tale eggs of most intestinal worms can be separated from horse faecal material. Faecal egg counts can accurately estimate the degree of any worm burden.

The tale-tale eggs of equine tapeworm are too small as to be accurately recovered and counted using the tried and tested methods of centrifugation and McMaster faecal egg counting. Detection of equine tapeworm infestation requires a new and innovative veterinary test.

Simple Saliva-Swab Test for Tapeworm in Horses
EquiSal Tapeworm Saliva Testing Kit for Horses is an Enzyme Linked Immunosorbant Assay test known as ELISA. The Equisal ELISA test searches out any antibodies produced by a horse’s immune system in response to tapeworm infection.

The EquiSal Tapeworm test works like an antibody blood test but uses saliva which horse
owners can collect themselves using a specially designed mouth swab as shown in this video . The swab is then simply packed in the preservative provided in the kit and posted to the laboratory in the freepost bag provided.

How Good Is The Equisal Saliva Tapeworm Test?

In a 2016 large-scale stables trial of Equisal, only 22% of the 749 horse tested were found to require veterinary treatment. This means that 78% – 583 horses – might have been unnecessarily and expensively treated if Equisal testing had not been carried out.

The economics of Equisal testing speak for themselves. Targetted treatment is not only economical, it also reduces the frightening prospect of runaway drug resistance resulting in debilitating and potentially lethal equine tapeworm infections.

To Treat or Not to Treat – That is The Question

The only 100% accurate way to measure a horse’s tapeworm burden would be count the number of worms within the horse’s intestines. In validation studies, the EquiSal Tapeworm test only misreported horses as tapeworm free when fewer than 20 tapeworms were present.

Parasitologists consider horses and donkeys showing fewer than 20 tapeworms to have a non-pathogenic medical condition. This means that these tests confirm the EquiSal Tapeworm Test as a success in identifying all pathologically significant tapeworm burdens.

Vets and stable owner can find all their technical questions about Equisal Testing answered in detail here, on Vetlab’s EquiSal Tapeworm FAQs page.

Health-check Your Honeybees For 3 Colony Killers

Health-check Your Honeybees For 3 Colony Killers

What beekeepers can do now to check if their honeybee hives risk three devastating diseases.

Honey bees are key to crop health making the vital contribution to pollination in crop production and in the natural environment.

Honey bee pollination is vital to food production and crop yield. DEFRA, The Welsh Government and Scottish Government estimate the economic benefit of honey bee pollination in the UK is estimated as £600m each year. In addition, the export value of UK natural honey was estimated £12.8 million in 2022.

Spot and Treat Viral Infections In Your Honeybees

Honeybee hives are constantly under threat from devastating infectious viruses. Unchecked, infection can go from drone to queen, queen to egg, nurse to larvae, and worker to worker.
Honeybee diseases may be high prevalence with many bees infected, high virulence with high levels of virus in individual bees or high pathogenicity where individual bees show lethal signs of disease.
There are few reliable and easy to use on-site tests for honeybee viral infections. The ‘gold standard’ polymerase chain reaction (PCR), useful even in colonies that do not show symptoms, is not a DIY option for the professional or hobbyist beekeeper.

Reliable, off the shelf and easy to use diagnostic test kits can give early warning of risks to hive health. Vetlab Supplies FASTest BEE 3T is the quick and easy three-in-one check for Deformed Wing Virus (DWV), Acute Bee Paralysis Virus (ABPV) and Sacbrood Virus (SBV) in the Honeybee.

Deformed Wing Virus (DWV)

New research from The Royal Society identifies DWV, spread through Varroa mite (Varroa destructor) infestation, as the main cause of overwintering colony death in honey bee hives. Though DWV has a global presence, where Varroa is absent or efficiently controlled there is little or no DWV infection.
Bees with shortened bodies and poorly developed or crippled-looking wings signal the presence of Deformed Wing Virus (DWV). Other signs of DWV include bees moving erratically and heaps of dead bees ejected from the hive.

In spring and summer, infected bees may die far out of sight in the field. In winter, when bees cannot fly out, the colony may die off unseen in the hive. In both cases, DWV is most easily refuted or confirmed with the real world practicality of the FASTest BEE 3T diagnostic kit.

Once present in the hive, the virus can spread in sperm from drones, eggs from the queen and by feeding mites. Research indicates that mites reduce the disease resistance of bees and larvae which allows the virus to multiply out of control.

At present, There are no treatments that act directly on the Deformed Wing Virus itself. Even if the beekeeper treats the colony and kills almost all the parasites, that may not be enough get rid of the actual virus.
Breeding virus resistant bees may be the best approach to DWV eradication. Until then, watchfulness for mites and for early DWV symptoms, together with testing for the DWV virus, may be the most worthwhile means of safeguarding your hives.

Sacbrood Virus (SBV)

Sac Brood Virus (SBV) infects and kills developing larvae in the honeycomb. Infected larvae turn from healthy white to a sickly yellow before turning dark brown or black. Worker bees often open up SBV infected cells giving a dark patchy appearance to the honeycomb.
Exposed dead larvae shrivel into dark scale-like crescents sometimes referred to as ‘gondola shaped’ or ‘Chinese Slippers’. The dead larva resembles a tough fluid-filled plastic ‘sac’ that can be removed using a pair of tweezers.

Sacbrood is caused by the Iflavirus virus which multiplies in the developing larvae. When the brood cells are capped, the diseased larvae fail to pupate. A relatively common disease in the first half of the brood season, it might affect only a small proportion of cells without resulting in severe colony damage.
Once again, it is the Varroa destructor mite that can spread this virus when feeding off honeybee larvae. Unhygienic keeper transfer of infected material, as well as feeding by nurse bees and the intrusion of ‘robber bees’, may also spread Sacbrood.

Re-queening the colony can help to reduce the impact of sacbrood virus as will reducing and controlling Varroa mite infestation. Testing dead larvae with FASTest BEE 3T may be the most efficient means of testing for Sacbrood Virus.

Acute Bee Paralysis Virus (ABPV)

Lethally mediated by Varroa mite infestation, Acute Bee Paralysis Virus (ABPV) kills adult bees, larvae and pupae. As with Deformed Wing Virus (DWV) the mite appears to suppress the infected bee’s immune response allowing the virus to multiply freely.

Heavily infected bees can spread ABPV not only to larvae in royal jelly and in pollen moistened with their saliva, but also in food shared with other adult bees. However, the principle means of infection is virus particles ‘injected’ directly into bodies of bees, larvae and pupae by feeding Varroa mites.
Varroa mites drive the rapid spread of Acute Bee Paralysis Virus throughout the hive. The virus can multiply so quickly and in so many mites that, when symptoms finally appear, it is already too late to save the hive.

Heavily infected bees show symptoms of tremor and paralysis. Many bees will die out in the field and dead larvae may be quickly removed by nurse bees. As a result, neither professional nor hobbyist beekeepers might notice the symptoms of ABPV before the entirely colony is destroyed.

Larvae that do survive become adult carriers, passing the virus to other larvae and, potentially, to many other hives. As with Deformed Wing and Sacbrood Virus, larvae and adult bees suspected of dying from Acute Bee Paralysis Virus can be most easily checked using the FASTest BEE 3T triple diagnostic test.

Business and Biosecurity Risks of Honeybee Diseases

Devastation of wild honeybees by pests and disease means that vital food crop pollination now depends heavily on commercial and hobbyist beekeepers and the health of their beehives and colonies.

Beekeepers can find more information and support from partner organisations including The British Beekeepers Association (BBKA), Bee Farmers Association (BFA), The Welsh Beekeepers’ Association (WBKA), Northern Ireland Department of Rural Affairs (DAERA), The National Bee Unit (NBU) and The Beebase Healthy Bees Plan 2030.

For more information on the quick and easy three-in-one check for Deformed Wing Virus (DWV), Acute Bee Paralysis Virus (ABPV) and Sacbrood Virus (SBV) in your honeybee hives and colonies, click this link to FASTest BEE 3T.

To find out more about our large range of veterinary diagnostic test kits visit our website: www.vetlabsupplies.co.uk or call Tel: 01798 874567

Contact Us

Contact Us

Please get in touch using the form below, or contact us on 01798 874567 or email info@vetlabsupplies.co.uk

Slideout Form